【《商不变的规律》基础习题】在数学学习中,理解并掌握“商不变的规律”是提升运算能力的重要一环。这一规律不仅有助于简化计算过程,还能帮助我们在解决实际问题时更加灵活地运用除法知识。本文将围绕“商不变的规律”设计一些基础练习题,帮助学生巩固相关知识点。
一、什么是“商不变的规律”?
“商不变的规律”指的是:在除法算式中,如果被除数和除数同时乘以或除以同一个不为零的数,商的大小保持不变。用公式表示为:
若 $ a \div b = c $,则
$ (a \times k) \div (b \times k) = c $
$ (a \div k) \div (b \div k) = c $(其中 $ k \neq 0 $)
二、基础练习题
1. 填空题
(1)已知 $ 24 \div 6 = 4 $,那么 $ (24 \times 3) \div (6 \times 3) = \_\_\_ $。
(2)如果 $ 50 \div 10 = 5 $,那么 $ (50 \div 5) \div (10 \div 5) = \_\_\_ $。
(3)根据 $ 36 \div 9 = 4 $,写出一个与之商相等的算式:\_\_\_\_\_\_。
2. 判断题
(1)在除法中,如果被除数和除数同时加上相同的数,商一定不变。()
(2)如果 $ 12 \div 3 = 4 $,那么 $ 24 \div 6 = 4 $ 是对的。()
(3)当被除数和除数都乘以0时,商仍然不变。()
3. 计算题
(1)利用商不变的规律,把 $ 80 \div 16 $ 转化为更容易计算的形式,并求出结果。
(2)将 $ 72 \div 12 $ 的被除数和除数同时扩大3倍,再计算新的商是多少?
(3)用商不变的规律简算:$ 150 \div 25 $。
4. 应用题
(1)小明在做一道除法题时,把被除数和除数同时乘以了2,得到的商是12。原来的商是多少?
(2)一个数除以某个数,商是5。如果被除数和除数同时除以3,新的商是多少?
(3)王老师有一堆书要分给学生,如果每人分8本,可以分给15人;如果每人分16本,能分给多少人?请用商不变的规律来解答。
三、总结
通过上述练习题,我们可以更好地理解和应用“商不变的规律”。在日常学习中,建议多做一些类似的题目,逐步提高自己的逻辑思维能力和计算速度。同时,也要注意避免常见的错误,如忽略“不能为0”的条件,或错误地进行加减操作而误以为商不变。
希望同学们能够通过这些练习,真正掌握“商不变的规律”,并在今后的学习中灵活运用。