首页 >> 精选范文 >

同底数幂的乘法运算法则急用

2025-09-16 22:30:40

问题描述:

同底数幂的乘法运算法则急用,卡了三天了,求给个解决办法!

最佳答案

推荐答案

2025-09-16 22:30:40

同底数幂的乘法运算法则急用】在数学学习中,同底数幂的乘法运算是一个基础且重要的知识点。它不仅在代数中广泛应用,也是后续学习指数函数、对数运算等知识的基础。为了帮助大家快速掌握这一法则,以下是对“同底数幂的乘法运算法则”的总结与归纳。

一、基本概念

- 底数:幂中的相同数字,如 $ a $ 在 $ a^3 $ 中。

- 指数:表示底数相乘的次数,如 $ 3 $ 在 $ a^3 $ 中。

- 同底数幂:指底数相同的幂,如 $ a^2 $ 和 $ a^3 $。

二、运算法则

同底数幂相乘时,底数不变,指数相加。

即:

$$

a^m \times a^n = a^{m+n}

$$

其中,$ a \neq 0 $,$ m $、$ n $ 为整数。

三、法则解释

该法则来源于幂的定义。例如:

$$

a^2 \times a^3 = (a \times a) \times (a \times a \times a) = a^5

$$

可以看到,底数 $ a $ 不变,而指数 $ 2 + 3 = 5 $,结果是 $ a^5 $。

四、常见应用示例

题目 计算过程 结果
$ 2^3 \times 2^4 $ $ 2^{3+4} $ $ 2^7 = 128 $
$ x^5 \times x^2 $ $ x^{5+2} $ $ x^7 $
$ (-3)^2 \times (-3)^3 $ $ (-3)^{2+3} $ $ (-3)^5 = -243 $
$ y^6 \times y^6 $ $ y^{6+6} $ $ y^{12} $
$ a^0 \times a^5 $ $ a^{0+5} $ $ a^5 $

五、注意事项

1. 底数必须相同:如果底数不同,不能直接使用此法则。

- 如:$ 2^3 \times 3^2 $ 无法合并。

2. 负数的幂需注意符号:

- 偶次幂为正,奇次幂为负。

3. 零指数的处理:

- 任何非零数的零次幂都等于1,即 $ a^0 = 1 $($ a \neq 0 $)。

六、总结表格

内容 说明
法则名称 同底数幂的乘法运算法则
法则公式 $ a^m \times a^n = a^{m+n} $
应用条件 底数相同,指数为整数
注意事项 底数不同时不可用;负数幂需注意符号;零指数为1
示例 $ 2^3 \times 2^4 = 2^7 $,$ x^5 \times x^2 = x^7 $

通过以上总结和表格,可以清晰地掌握“同底数幂的乘法运算法则”,并能灵活应用于实际问题中。希望这份内容对你有所帮助!

以上就是【同底数幂的乘法运算法则急用】相关内容,希望对您有所帮助。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章